
An Evaluation of the High Level
Architecture (HLA) as a

Technology for Use in Space
Mission Simulations

Results and Conclusions from the SIMSS HLA
Study and Prototyping Effort

Michael R. Reid
Computer Sciences Corporation

Consolidated Space Operations Contract (CSOC)

October 3, 2000

1

Executive Summary

The High Level Architecture (HLA) is a current U.S. Department of Defense (DoD) and an
upcoming industry (IEEE-1516) standard architecture for modeling and simulations. It
provides a framework and a set of functional rules and common interfaces for integrating
separate and disparate simulators into a larger simulation. The main function of the HLA
is to integrate and facilitate the interoperability of numerous different simulators running
collaboratively on a variety of platforms and to provide advanced time and data
management for the overall simulations. The HLA accomplishes this by defining a set of
rules to which all compliant applications must adhere, a common model for sharing data, a
standard schema for data documentation, and most importantly, an application program
interface (API) for a Runtime Infrastructure (RTI) software system.

For data sharing among participant applications within a simulation, the HLA specifies an
object-oriented variation on the basic publish and subscribe paradigm. Persistent data are
stored within the attributes of HLA objects. Ephemeral data are distributed through HLA
interactions, essentially broadcast messages. Data producing applications update HLA
object attributes and send interactions. Data consuming applications read object attributes
and receive interactions. Applications can be, and commonly are, both publishers and
subscribers of data.

The HLA is especially well suited as a basis for game-like simulations in which a little
“universe” is being simulated with multiple actors coming and going and interacting. It also
has potential as a framework for integrating numerous separate simulators into a larger
distributed simulation system. The fact that HLA-based simulators are designed around
data classes from which any number of instances may be created give them great
potential for easy expandability. The HLA’s inherent distributed nature should also allow
for essentially unlimited scalability.

The HLA is not in itself, a simulator or a modeling tool. It is not a rapid application
development system for simulations and it does not provide any data display capabilities
or user interfaces. Although intended to make integrating disparate and remote simulators
more practical, it will not make “plug and play” a reality. The HLA is probably not an
appropriate architecture for simulations that just generate data for some single, external
system or for simulations that cannot define their problem space as a collection of
interacting objects. For systems such as these, the HLA would just be an unneeded extra
layer and would provide little or no additional value. Simulators required to send data
through a specific type of interface, such as IP or through a hardware bus are also not
suited for the HLA, since bypassing the RTI for external communications violates one of
the primary rules of the HLA. This is not to say that simulators such as these could not be
formed into components of larger HLA-based simulations. They certainly could be.

The HLA could find a role in NASA as a core technology in certain types of space mission
simulations, especially those involving multiple spacecraft flying in formation. It could also
serve as the basis for the scientific modeling of natural systems. The HLA will not increase
the fidelity of simulators, but its modular and distributed design will make it easier to build
higher-fidelity simulators.

In order to evaluate the suitability of the HLA as a technology for NASA space mission
simulations, a simulations group at GSFC conducted a study of the HLA and developed a
simple prototype HLA-based simulator.

2

Abstract

The High Level Architecture (HLA) is a current Department of Defense (DoD) and an
upcoming industry (IEEE-1516) standard architecture for modeling and simulations. It
provides a framework and set of functional rules and common interfaces for integrating
separate and disparate simulators into a larger simulation. The goal of the HLA is to
reduce software costs by facilitating the reuse of simulation components and by providing
a run-time infrastructure to manage the simulations. In order to evaluate the applicability
of the HLA as a technology for NASA space mission simulations, the CSOC Simulations
Group conducted a study of the HLA and developed a simple prototype HLA-compliant
space mission simulator. This report contains a summary of the prototyping effort and a
discussion of the HLA with the author’s conclusions as to its strengths, limitations, and
potential usefulness in the design and planning of future NASA space missions with a
focus on risk mitigation and cost reduction.

Acknowledgements

The author wishes to acknowledge the important contributions made to this HLA study
and prototyping project by his colleagues and fellow team members, Dr. Neil A. Ottenstein
and William G. Parlock both of Computer Sciences Corporation.

3

Contents

Introduction___ 5
Overview of The High Level Architecture (HLA) _________________________________ 6

Synopsis __ 6

Nomenclature__ 6

The Federation Object Model (FOM) __ 7

Services Provided by the RTI ___ 8
Federation Management___ 8
Declaration Management __ 8
Ownership Management __ 8
Time Management___ 9
Object Management__ 9
Data Distribution Management (DDM) ___ 9

The R&D Study and Prototype ___ 10
Purpose__ 10

Methodology__ 10

Platforms and Software Used __ 11
Linux™ ___ 11
GSFC Flight Dynamics Programs __ 11
Octave ___ 11
gnuplot___ 11
DMSO Runtime Infrastructure (RTI)__ 11

The Prototype___ 12
The Spacecraft Controller __ 12
The Orbit Calculator __ 13
The Tracking Station __ 13
The Earth Simulator___ 13

The Data Flow __ 13

Software Design___ 16
The Base Object Class__ 16

The Base Interaction Class __ 18

The Base Federate Class __ 20

The Federate Ambassador Class ___ 22

Code Reuse___ 22

Evaluation of the HLA as a Technology _______________________________________ 23
What the HLA Is __ 23

What the HLA Is Not __ 23

What the HLA Is Good For ___ 23

4

What the HLA Is Not Good For__ 23

What the HLA Will Do ___ 24

What the HLA Will Not Do ___ 24

Observations on the RTI__ 24

Considerations __ 25

The HLA and NASA ___ 26
Formation Flying__ 26

Natural Systems___ 27

The SIMSS ___ 27

Summary and Conclusions__ 28
Glossary ___ 29

5

Introduction

The High Level Architecture (HLA)1 is a standard software architecture for modeling and
simulations. The Defense Modeling and Simulation Office (DMSO)2 of the U.S.
Department of Defense (DoD) sponsored the development of the HLA as part of an effort
to control the costs and increase the reliability of its simulators. Although originally
designed to fit the extensive simulation needs of the DoD and other allied defense
organizations, the HLA is by no means limited to military applications. It is already finding
users well beyond the defense arena and will soon emerge as an IEEE standard (IEEE-
1516)3. The HLA is a suitable core technology for diverse applications ranging from
games designed purely for amusement to the serious simulation and modeling of complex
and sophisticated industrial processes and work flows.

Modern simulation systems often reside on networks of computer systems with numerous
individual simulators concurrently running on separate and disparate computing platforms.
The concept of distributed and remote computing lies at the core of the HLA. Its main
function is to integrate and facilitate the interoperability of numerous different simulators
running collaboratively on a variety of platforms and to provide advanced time and data
management for the overall simulations. The HLA accomplishes this by defining a set of
rules to which all compliant applications must adhere, a common model for sharing data, a
standard schema for data documentation, and most importantly, an application program
interface (API) for a Runtime Infrastructure (RTI) software system. To put it succinctly,
“The HLA is the glue that allows you to combine computer simulations into a larger
simulation.”4

In many ways, NASA’s simulation needs mirror those of the DoD. Like the DoD, NASA
operates complex operational systems and relies on simulators to reduce both risk and
cost and will likely do so to an even greater extent in the future. Several recent mission
failures, schedule delays, and cost overruns underscore the need for the high-fidelity
simulation of missions prior to their launch. The HLA is best suited for game-like
simulations, in which numerous “actors” come and go and interact. In the NASA realm,
large simulation systems, which model the interplay of multiple spacecraft, ground
systems, natural objects, and natural phenomena would be candidates for an HLA-based
design.

During fiscal year 2000, the author, with assistance from colleagues, conducted a study of
the HLA and developed a rudimentary, prototype space mission simulator based on this
technology. The purpose of the effort was to evaluate the suitability of the HLA as a
technology for NASA space mission simulations and scientific modeling. This paper
introduces the HLA, describes the prototyping effort, documents the things that were
learned, and presents the author’s conclusions.

1 See http://hla.dmso.mil/.
2 See http://www.dmso.mil/.
3 See http://standards.ieee.org/.
4 Frederick Kuhl, Richard Weatherly, Judith Dahman, Creating Computer Simulation Systems: An Introduction to
the High Level Architecture, p.1, Prentice Hall PTR, 1999.

6

Overview of The High Level Architecture (HLA)

Synopsis

The HLA is a DoD and IEEE standard framework that supports modeling and simulations.
It facilitates distributed and multi-platform computing by integrating disparate applications
running concurrently at both local and remote locations. In fact, HLA-based simulations
run best as distributed systems over a computer network. The RTI handles all
communications between participating simulators, synchronizes the overall simulation,
and provides data and time management. The HLA consists of a set of rules to which all
compliant applications must adhere; an interface specification, which all compliant
applications must exclusively use for external interactions; and a standard format for
defining and describing shared data. The HLA is an architecture, not a simulator or
modeling tool in itself.

For data sharing among participant applications within a simulation, the HLA specifies an
object-oriented variation of the basic publish and subscribe paradigm. Persistent data are
stored within the attributes of HLA objects. Applications that provide data publish the
relevant attributes of the appropriate objects and update them. Applications that receive
data subscribe to those attributes and read them. Ephemeral data are stored in HLA
interactions. Data producing applications send interactions on a one-time basis and data
consuming applications receive them. Applications can be, and commonly are, both
publishers and subscribers of data.

Nomenclature

Like most technologies, the HLA has a specialized terminology associated with it. A list of
the most important terms and their definitions follows. See the glossary at the end of this
paper for a more expansive list.

Federate: An individual simulator application. These are the independent simulators,
which the HLA integrates together into a larger collaborative simulation.

Federation: A simulation composed of two or more (often many more) federates
integrated together.

Federation Execution: A session in which a federation is running, usually as a distributed
system.

Federation Object Model (FOM): The common object model that defines the data shared
between federates within the federation.

Simulation Object Model (SOM): The object model that defines the data shared by an
individual federate with the federation. The FOM is a subset of the collection of SOMs
defined for the federates in the federation.

Federation Execution Data (FED): The actual data defined in the FOM, which is shared
between two or more federates within the federation execution.

Object: An HLA object is a container for data, which is created by a federate during the
federation execution and persists for the duration of the federation execution or until a

7

federate deliberately destroys it. Like objects in object-oriented programming
languages such as C++ or Java, HLA objects are defined as classes and are realized
as instances of those classes. They are composed of attributes, which can be of
various data types, including composite data types. Subclasses of objects can be
derived from other classes with full attribute inheritance and extensibility. HLA classes
do not contain methods (a.k.a., member functions). Federates which wish to update
some or all of the attributes of any given class of object, must publish those attributes.
Federates which wish to read the data stored in an object’s attributes, must subscribe
to the attributes of interest. Only one federate at a time may own a given instance of
an object; however, other federates may “own” some of the attributes of that object
and publish them and different federates may own different attributes within that same
object instance. Any federate may subscribe to the attributes of any class of object.
All objects are defined in the FOM and any federate that wishes to publish or
subscribe to an object’s attributes must also define that object in its SOM.

Interaction: An HLA interaction is essentially a broadcast message that any federate
within the federation execution can send or receive. Like HLA objects, interactions
are data containers, which are defined as classes within the FOM and can be derived
from other classes with full inheritance and extensibility. Federates publish them and
subscribe to them. Unlike HLA objects, interactions do not persist. They are sent out
and are either received or missed. If no subscribing federate receives the interaction,
the data it carries are lost. For some reason, the data elements within interaction
classes are called parameters instead of attributes. Any federate which wishes to
publish or subscribe to an interaction must define that interaction in its SOM.

Runtime Infrastructure (RTI): The COTS or GOTS software, which implements the HLA
interface and runs the federation execution (i.e., the overall simulation).

The Federation Object Model (FOM)

The Federation Object Model (FOM) describes the universe. That is, the universe that the
federation is modeling. It is an abstract, but fundamental component of the HLA. The RTI
and the other federates need a precise description of the type and form of every object
and interaction that they share. The HLA defines a standard format and syntax for
documenting objects and interactions, essentially a data description language. This data
description language has two forms, a set of tables that are easy for humans to create and
read based on the HLA Object Model Template (OMT) and a LISP-like syntax that is easy
for the RTI to read.

The FOM defines every object and interaction known to the federation and provides a
complete list of every attribute contained in every object and every parameter contained in
every interaction. It also precisely specifies the forms and data types of all attributes and
parameters. The data definition language provides the basic numeric and character data
types, but also provides the means for one to define application-specific enumerated and
complex data types (structures). The OMT tables are for humans to read and are the
documentation of the FOM required for HLA-compliance certification. One writes the
LISP-like syntax to the Federation Execution Data (FED) text file. The RTI reads the FED
file and from it knows about the objects and interactions shared within the federation.

For HLA-compliance, every federate must have a Simulation Object Model (SOM) defined
for it and documented in accordance with the OMT. The SOM is really just a miniature
FOM that only deals with the data shared externally by that federate. The FOM is a
subset of the aggregate of the SOMs of all of its member federates. It is a subset because

8

some SOMs may contain data definitions not used in that particular federation. When
designing a federation, the persons responsible for integrating the various federates
convene to agree on the FOM in a meeting sometimes called the “FOM-o-rama.”

DMSO provides a convenient tool for documenting FOMs and SOMs. The Object Model
Development Tool (OMDT) makes it easy for a federation designer to create
OMT-compliant tables. Especially useful in the case of FOMs, it will automatically
generate an operationally usable FED file from those tables.

Services Provided by the RTI

The RTI provides six basic categories of services described below. A federate makes use
of these services by making calls to the HLA RTI interface through its Local RTI
Component (LRC). The LRC consists of an interface and a library to which the federate
binds. As defined in the HLA specification, the LRC implements an RTI ambassador,
which provides the application program interface (API) that a federate uses to send
directives and information to the RTI. It defines a federate ambassador, which consists of
a set of callback functions implemented for the specific federate. The RTI calls these
functions to send directives and information to the federate. In the case of the DMSO RTI,
the RTI ambassador and the federate ambassador allow the federate to communicate
with the fedex and rtiexec daemons, which manage the federation execution and handle
the network protocols.

Federation Management

The RTI incorporates the Federation Execution Data (FED) into the federation execution
by reading the FED configuration file (“FED file”). It also creates federation executions,
provides a means for an HLA-compliant application to join the federation execution as a
participating federate and to resign from it, sets federation-wide synchronization points,
effects saves and restores, and destroys the federation execution.

Declaration Management

The RTI provides this service to manage the publication and subscription to HLA objects
and interactions. By calling the RTI’s declaration management services through the HLA
RTI interface, a federate can publish selected object attributes and interaction parameters
and subscribe to them.

Ownership Management

Through this service, the RTI controls the ownership of object attributes. In order to
update an object instance’s attributes, a federate must first secure ownership of those
attributes from the current owner. The current owner may either relinquish ownership to
the requesting federate or refuse the request. The RTI handles this transaction. Only the
owning federate may update attributes of the given object instance; however, not all of the
attributes in an object instance need be owned by the same federate. Every HLA object
inherits a special privilegeToDeleteObject attribute from the HLA-defined ObjectRoot
base class. Only the owner of this attribute may delete the given object instance from the
federation. By default, the federate, which creates and registers an object instance initially
owns all of its attributes. The RTI enforces these rules.

9

Time Management

Through its time management service, the RTI controls when federates can advance their
positions on the federation’s time-line. This determines when they receive notifications of
changes to the state of the federation execution, such as object attribute updates and
when they receive time-stamped interactions. The RTI can manage either clock-driven
(time-step) simulators or event-driven simulators. In the case of clock-driven simulators,
each federate is responsible for maintaining its clock. However, in order to advance its
clock, a federate must first request permission from the RTI and then wait for it to be
granted. This allows the RTI to keep the federation synchronized. The RTI delivers time-
stamped events such as object attribute updates and interactions to a federate only when
that federate has reached the proper place in its time-line. In the case of even-driven
simulators, the RTI will tell the federate how far. Clock-driven federates and event-driven
federates can “play” together in the same federation.

The HLA provides three timing schemes for federates. A federate can be time regulating,
time constrained, both time regulating and time constrained, or neither time regulating nor
time constrained. A time regulating federate can pace the rest of the federation. The RTI
will not grant time advance requests from the other federates until the regulating federate
has caught up with them. A time constrained federate can be paced by the rest of the
federation. The RTI will not grant its time advance requests until the rest of the federation
has caught up with it. A federate that is both time regulating and time constrained can
both pace the federation and be paced by it. And finally, a federate that is neither time
regulating nor time constrained is not time-managed and is therefore unaffected by the
time positions of the other federates. The RTI grants time advance requests from an
unmanaged federate unconditionally and delivers events to it as they occur without regard
to their time-stamps.

Time management is a major and powerful feature of the HLA. It allows federates to keep
pace with the other federates without having to have complex custom synchronization
features built into them.

Object Management

This is the RTI service, which facilitates data sharing within a federation. It allows
federates to create new instances of objects in the federation and other federates to
“discover” them. It allows data producing federates to publish objects and interactions and
data consuming federates to subscribe to them. In order to comply with the HLA
specifications, all federates within a federation must communicate with each other
exclusively through the RTI Object Management services.

Data Distribution Management (DDM)

This service allows federates to associate objects with regions of interest and direct the
RTI to filter subscribed events and deliver them to a given federate only if they are of
interest. For example, a simulated tracking station may subscribe to some of the attributes
of a spacecraft object, but wish to receive attribute update notifications only when the
“spacecraft” comes within its cone of visibility. One could implement this type of filtering by
defining a routing space for the federation based upon geographic parameters and relate it
to that object. The federate simulating a tracking station would call the RTI’s DDM
services to define a region of interest within that routing space based upon its cone of
visibility. The RTI would subsequently deliver attribute update notifications for that object to
that federate only while the “spacecraft” is within that region of the routing space.

10

The R&D Study and Prototype

Purpose

In order to evaluate the suitability of the HLA as a technology for NASA space mission
simulations, the CSOC Simulations Group conducted a study of the HLA and developed a
simple prototype HLA-based space mission simulator. The CSOC Simulations Group and
our customer at NASA Goddard Space Flight Center (GSFC) are interested in modeling
overall space missions. This involves numerous, separate applications simulating the
complex and multifarious aspects of a space mission and its numerous physical
components. Examples of these components are spacecraft, on-board instruments,
telemetry, tracking stations, ground systems, flight dynamics, and in the case of science
missions, the natural objects and phenomena under study. We believe that many future
missions will involve constellations and formations of spacecraft working together. The
collaborative interactions of multiple spacecraft will add a new and complex, but exciting,
dynamic to missions and modeling them early in their development cycle will be crucial to
their ultimate successes. The HLA is possibly one of the technologies that could make
these sophisticated new simulation systems realities. The study focused on the HLA and
its potential in this area and this paper documents that study and the author’s conclusions.

Methodology

We first read existing documentation and other literature on the HLA and attended training
sessions provided by DMSO. This provided a fundamental knowledge base from which to
work. We then formulated a basic concept of how an overall space mission simulation
would work, the primary components involved, and how the components would interact.
The HLA was to provide the basic architecture and framework for the simulation. In order
to investigate the technology within the scope of a very small and inexpensive prototyping
effort, the simulation had to be limited to only several component simulators and they had
to be very simple. We developed the concept of operations or “ConOps” for the prototype
and documented it in a slide presentation.

The next step after getting peer-level feedback from the ConOps presentation was to
develop a list of high-level requirements for the prototype. These included minimum
essential requirements and optional “nice to have” requirements to be implemented only if
time permitted. We then searched through the free and open-source software community
for free software components, which we could use and were delighted with what we found.
We designed the prototype to make use of free software and of Government-owned
software developed by the Flight Dynamics group within GSFC. We followed this with a
fully object-oriented design for the prototype and documented it in the Unified Modeling
Language (UML). Senior members of the technical staff reviewed the design at a formal
design inspection. We also sent it to our NASA customer.

After receiving feedback from the design inspection, implementation began.
Implementation went rather quickly, since the requirements and design were reasonably
complete and stable. The exclusive use of free software components in the prototype
allowed us to proceed without the delays and nuisances of licensing restrictions
associated with proprietary software.

11

Platforms and Software Used

In order to reduce costs, the prototype was built using entirely free or in-house developed
software and it binds to no proprietary software or libraries. A secondary goal of the
prototyping effort was to validate the massive public library of free and open-source
software as a source of usable components. The components we used performed very
well and met all of our expectations.

Linux™

The prototype was developed on and currently runs on a standard Pentium II®-based
desktop computer running the Linux1 operating system. Linux (more appropriately called
“GNU/Linux”) is a free, mostly POSIX-compliant, and open-source Unix-like operating
system that has gained enormous popularity in recent years. Due to its stability, the
plethora of high-quality free software available for it, and its inherent upwards compatibility
with Unix, Linux turned out to be an excellent development platform for this project. Linux
and most of the software that runs on it is licensed under the GNU General Public License
(GPL). The GPL allows for the free use, copying, modification, and redistribution of
software, including its source code.

GSFC Flight Dynamics Programs

In order to generate simulated spacecraft orbital positions and to simulate Earth magnetic
field data, the prototype made use of a set of programs previously developed by the Flight
Dynamics group at GSFC. Because they are Government-owned, these programs were
available to us without cost. These programs are written in Matlab® and required only
modest modifications in order for us to incorporate them into the prototype.

Octave

Octave2 is a free and open-source fourth generation (4GL) programming language and
environment, which is mostly source-compatible with Matlab®. We used Octave to run the
Flight Dynamics programs described above. They ran fine under Octave with only a few
very minor modifications. Octave is publicly available and released under the GPL.

gnuplot

gnuplot is a free, but sophisticated, graphics program. We used it to generate all of the
graphics.

DMSO Runtime Infrastructure (RTI)

The DMSO RTI is at the heart of the system. It is the HLA-compliant runtime
infrastructure, which manages the simulation and handles all communications between
applications. It consists of a library, which implements the HLA-defined application
program interface (API) and a set of daemons, which run the simulation and handle
communications. It is a certified and tested HLA RTI and is available on several platforms
including Linux. DMSO provides and, for now at least, supports the software free of
charge to U.S.-based organizations. The RTI will be discussed in detail in a later section
of this paper.

1 Linux™ is a trademark of Linus Torvalds.
2 See http://www.che.wisc.edu/octave/.

12

The Prototype

The prototype space mission simulator simplistically models a rudimentary constellation of
two Earth-orbiting spacecraft collecting science data. A “tracking station” monitors the
positions of the two spacecraft in simulation time and a simulated Earth generates science
data for their on-board instruments to collect. In its present form, this simulator does
nothing that would be of direct use to any real mission or application; but it does illustrate
the overall concept of how a useable space mission simulator might work and it
demonstrates the role that HLA technology could play in such a system.

The prototype space mission simulator consists of four small, specialized simulators: a
Spacecraft Controller, an Orbit Calculator, an Earth simulator, and a Tracking Station.
These four simulators are all fully HLA-compliant and are completely separate
applications. They run concurrently and separately, but not independently, of each other
in individual processes and optionally on separate machines. As is required for
HLA-compliance, the four simulators each define the data they share with the rest of the
simulation in a Simulation Object Model (SOM) documented according to HLA
specifications. Collectively, these SOMs make up the federation’s FOM, which is also
documented according to HLA specifications. These four simulators are federates and
they communicate exclusively through the RTI to make up an HLA federation.

The FOM defines one HLA object class for the simulation, a spacecraft object; and the
simulation creates two instances of it. One instance loosely represents the Landsat 7
spacecraft and the other the Terra spacecraft. This simplistically models a two-spacecraft
constellation. We selected Landsat 7 and Terra because they follow similar orbits and
their orbital elements are readily available. However, their orbital paths are really the only
aspects of these missions that are meaningfully modeled by this prototype.

Internally, these simulators do little more than move data around, but all of their external
interactions are handled by the RTI and they maintain full HLA-compliance. Again, the
purpose of the prototype was not to realistically model a space mission, but to study and
evaluate the HLA and to get an idea of how one might eventually use the HLA to build a
useful space mission simulator in the near future.

The Spacecraft Controller

The Spacecraft Controller simulates the two spacecraft. It creates the two instances of
spacecraft objects and registers them with the RTI. It also manages a simulated
magnetometer science instrument on-board the “Landsat 7” spacecraft.1 This instrument
is implemented simply as a data structure to which magnetic field data are written. The
spacecraft controller then writes these data out to a temporary file from which gnuplot
reads them and graphs them on a simple line chart for the user. Although the Spacecraft
Controller creates and maintains the spacecraft, it does not update any of their attributes.
In fact, it relinquishes ownership of their positional attributes to the Orbit Calculator
federate and ownership of the magnetometer science instrument attribute to the Earth
federate. It retains ownership only of the inherited privilegeToDeleteObject attribute, which
it needs in order to delete the objects from the federation when the simulation is done. In
order to keep pace with the federation, the Spacecraft Controller makes use of the RTI’s
time management services as a time regulating and time constrained federate.

1 The real Landsat 7 spacecraft does not have a magnetometer as a science instrument.

13

The Orbit Calculator

The Orbit Calculator computes the orbital paths of the two simulated spacecraft based on
the two-line orbital elements of the real Landsat 7 and Terra spacecraft. For each of the
spacecraft, it computes nadir geographic ground coordinates as a function of simulation
time. The Orbit Calculator acquires ownership of the spacecraft objects’ positional
attributes from the Spacecraft Controller, publishes them, and updates them with the
ground positions that it has read for them with each advance of its clock. The Orbit
Calculator is a time regulating and time constrained federate. In fact, its sets the pace of
the federation by retrieving nadir ground positions with each advance of its clock. The time
step of its internal clock is the interval between each data point in its precomputed orbital
position file.

In order to generate nadir ground positions for the simulated spacecraft, the Orbit
Calculator reads a file containing precomputed positions for the two spacecraft for the
interval of simulation time. The GSFC Flight Dynamics group has developed programs
that perform these calculations for any satellite using its two-line orbital elements and a
specified time interval. The Landsat 7 and Terra spacecraft’s two-line orbital elements are
publicly available. We obtained the Matlab® source files for these programs from the
Flight Dynamics group and made some modifications. Running under Octave, the
programs generate the files containing the positions of the two spacecraft for the desired
time interval and the Orbit Calculator later reads them.

The Tracking Station

The Tracking Station simulator subscribes to the spacecraft objects’ positional attributes,
but does not update them. It reads the attributes each time that the RTI notifies it of
updates and writes the data to a temporary external file. A separate gnuplot process
reads the file and displays the positions of the two spacecraft on a map of the Earth as a
function of simulation time. The result is a simple graphic that depicts the paths of the two
spacecraft over the Earth during the simulation. Since the Tracking Station does not
publish data, no other simulators are dependent upon it. Therefore, the Tracking Station
federate is time constrained only. The federation paces it, but it cannot pace the
federation.

The Earth Simulator

The Earth simulator produces simulated earth sciences data that a simulated instrument
on-board the spacecraft can sample. In this case, it generates Earth magnetic field data
for the “magnetometer” on-board the simulated Landsat 7 to measure.

Like the Orbit Calculator, the Earth simulator reads an external file containing
precomputed data. A program, also obtained from the GSFC Flight Dynamics group,
computes magnetic field intensities as three-component vectors for a set of positions on
the Earth and writes them to a file. These positions match those for the paths of the
spacecraft computed for the Orbit Calculator. We run the magnetic field program under
Octave and generate the data file prior to running the Earth simulator.

The Data Flow

The Spacecraft Controller, Orbit Calculator, Tracking Station, and Earth Simulator are all
HLA federates. Together, they make up an HLA federation. Each federate runs in its own
process as a separate and stand-alone application. The federates run together on

14

multiple machines as parts of a distributed computing system and exchange data
exclusively through the RTI.

The user starts the four simulator applications, hereafter referred to as “federates”, and the
rtiexec daemon separately on their respective machines from the command lines. The
first federate to come up creates the federation and causes the rtiexec daemon to spawn
the fedex daemon. As each federate comes up, it registers with the RTI and “joins” the
federation. All of the federates subscribe to the Start_Time_Msg and SimulationEnds
interactions. The Orbit Calculator federate publishes the positional attributes of the
spacecraft object class and the Earth federate publishes the magnetometer instrument
attribute. The Tracking Station federate subscribes to the positional attributes of the
spacecraft object class and the Spacecraft Controller subscribes to the magnetometer
attribute. After successfully joining the federation, the Spacecraft Controller creates the
“Landsat 7” and “Terra” instances of the spacecraft object class and registers them with
the RTI.

The data flow begins with the Orbit Calculator. This federate opens the precomputed
orbital positions files for the two spacecraft and reads the simulation start time and the
starting positions of the two “spacecraft.” It sets its internal clock to the simulation start
time, packs the value into the Start_Time_Msg interaction, and sends it. Upon receipt of
this interaction, each of the other federates sets its internal clock to the simulation start
time and requests a time advance grant from the RTI to that time. If a federate joins the
federation late and misses the Start_Time_Msg interaction, it queries the RTI for the
current federation time and sets its internal clock accordingly. This scheme allows the
federates to self-synchronize with the rest of the federation. The Orbit Calculator acquires
ownership of the two spacecraft object’s positional attributes and updates them with the
positions that it has read from the external file. It then reads the next simulation time and
corresponding set of positions and requests a time advance from the RTI for that time.
Once the RTI grants the request, the Orbit Calculator advances its internal clock and
again updates the positional attributes of the spacecraft objects. This cycle repeats until
all of the data in the position files have been read. Since the Orbit Calculator is a time
regulating federate, it paces the rest of the federation. Since it is also a time constrained
federate, the RTI will not grant its time advance requests until the rest of the federation has
caught up with it. When the Orbit Calculator has read the last time and position value set
from the position files, it sends the SimulationEnds interaction to the federation. It then
resigns from the federation and terminates. When the other federates receive this
interaction, they also resign from the federation and terminate. The simulation is done
when the last federate has terminated.

Each time that the Orbit Calculator updates the attributes of one of the spacecraft object
instances, the RTI sends a notification to the federates which have subscribed to them.
The Tracking Station federate reads the positional attributes for both spacecraft each time
the RTI informs it of an update. As it receives them, it writes the positional data to a
temporary external file and a separate process repeatedly evokes gnuplot to read this file.
gnuplot plots the positions on a map of the Earth and displays them on the screen. The
result is a continuously updated map of the Earth with the tracks of the two spacecraft
displayed on it in simulation time.

Like the Orbit Calculator, the Earth simulator reads an external data file generated by
another Flight Dynamics program running under Octave. This file contains Earth magnetic
field intensity data that correspond to the spacecraft’s nadir pointing ground positions in
simulation time. There is an exact one-to-one temporal correspondence between the
positional data points read by the Orbit Calculator and the magnetic field data points read
by the Earth federate. These magnetic field intensity values simulate science data that

15

would be measured by a magnetometer instrument on-board a spacecraft. With each
advance of its internal clock, the Earth federate updates the “magnetometer” attribute of
the “Landsat 7” object with a value read from the magnetic field file. Like the other
federates, it advances its clock only when the RTI grants it permission to do so. The Earth
federate is both time regulating and time constrained, so it will not update the spacecraft’s
attribute with the next data point until the RTI sends it a time advance grant. Therefore,
the federation cannot get ahead of it on its time-line and it cannot get ahead of the
federation.

In order to simulate an on-board instrument collecting science data, the Spacecraft
Controller subscribes to the magnetometer attribute of the spacecraft objects. Each time
the Earth federate updates the attribute, the RTI informs the Spacecraft Controller and the
Spacecraft Controller reflects (reads) the attribute and writes its value to a temporary
external file. A separate process evokes gnuplot to read this file and display a line graph
of the three magnetic field intensity vector components as a function of simulation time.
Through its time management services, the RTI makes sure that all of this happens while
the federates are at the same point in their simulation time-lines. Thus even though their
respective data are being generated by separate applications, the magnetic field intensity
graph temporally matches the display of the spacecraft ground tracks.

• Figure 1 A diagram of the data flow within the prototype Space Mission Simulator

We normally run the Space Mission simulator on two separate Linux machines, typically
with the Spacecraft Controller and the Tracking Station on one and the Orbit Calculator
and Earth simulator on the other. The RTI transparently handles the network connections
and data communications. From the point of view of the federation, it does not matter
which federates are running on which machines. Theoretically, one could run an entire
federation on a single machine; however, we found that two or more of these applications
running on a single Pentium II®-class processor taxes the system resources beyond
acceptable limits.

Landsat-7

Terra

RTISpacecraft
Controller

Earth

Orbit
Calculator

Tracking
Station

L7 Orbital Elem.
File

Magnetic
Field
Data

MagneticField
Display

SC Tracks on
Earth Map

Display

16

Software Design

The Space Mission simulator design follows a strict object-oriented paradigm and is
documented using UML syntax. Each federate is implemented as a class, which is
derived from a higher-level abstract base class. The higher level abstract base
implements the HLA. The Spacecraft objects and the interactions are also implemented
as classes and are derived from higher-level abstract base classes. To the greatest
degree possible, the HLA and its interface to the RTI are implemented in the base classes
and the simulator-specific functionality in the derived classes.

The federates are written entirely in C++. Every effort was made to avoid platform or
vendor-specific coding constructs and system calls. Although developed on a Linux
system, they conform to ANSI and POSIX standards and should be portable to other
platforms, including Windows NT1. Porting them to Unix systems, especially if one uses
the widely available GNU C++ compiler (gcc), should be easy. The programs, which
generate orbital positions and magnetic field intensities, are written in Octave. Octave is
available only on Unix and Linux; however, because it is source-compatible with Matlab®,
these programs should be highly portable also. Versions of gnuplot are available for a
wide number of platforms.

The Base Object Class

The design for the prototype includes an abstract base class called sm_HLA_Object and
requires that every HLA object class defined in the FOM have a corresponding C++ class
derived from this base class. The derived C++ classes inherit RTI interfacing functions
from the base class and extend it by including attributes that precisely match those defined
in the associated FOM object class. Whenever a federate creates or discovers an
instance of a FOM object, it mirrors it by creating a local instance of the corresponding
C++ class. The base class does not contain publishable attributes of its own2, since they
are specific to the particular type of object. These are left to the object-specific derived
classes. But it does define member functions to create, discover, and destroy instances of
the object class and other member functions to publish, subscribe, update, and reflect
(read) the derived object’s publishable attributes. Some of the base class’s member
functions are purely virtual since they depend upon object-specific attributes.

This prototype’s FOM defines only one object class, a Spacecraft object. The prototype’s
C++ code contains a corresponding class, Spacecraft, derived from sm_HLA_Object. A
federate or group of federates may create and register any number of instances of
Spacecraft. The Spacecraft Controller creates two such instances, one it calls “Landsat 7”
and the other “Terra”. The two Spacecraft instances are identical in form, but the RTI
knows them by different names and their attributes contain different values. This ability to
create any number of instances of an object class is a major feature of the HLA. In the
prototype, the other three federates subscribe to the Spacecraft class and whenever they
discover a new instance of it, they create corresponding local instances of the C++ version
of the class. When a federate wishes to acquire or relinquish attribute ownership, update,
or read the attributes of one of the HLA object instances, it simply calls the associated
public member function in the C++ object. The member function in turn calls the
appropriate functions in the RTI ambassador to perform the operation.

1 Windows NT® is a trademark of Microsoft Corporation.
2 Except for a counterpart to the HLA-defined privilegeToDeleteObject attribute inherited from the predefined HLA
Object Root class.

17

• Figure 2 The above UML class diagrams show the class relationship between the HLA_Object
base class and the derived Spacecraft class. The diagram on the left is the C++ definition and the
corresponding HLA FOM definition of the class is on the right. Some less important attributes
have been omitted from the C++ diagram. “Landsat 7” and “Terra” are instances of the
Spacecraft object class.

Of course in a realistic simulation, the Spacecraft class would have far more attributes.
Since the prototype only models the positions of spacecraft and an on-board
magnetometer science instrument, it only contains attributes for them. One will notice an
imager attribute as well. This is for a simulated imager science instrument, which was not
implemented in the current prototype. In the future, one could be more specific as to the
types of spacecraft modeled and carry the class hierarchy to more levels. Since both C++
and the HLA FOM standards fully support class inheritance, one could model specific
types of spacecraft by deriving additional classes from the Spacecraft class. One could
reuse the sm_HLA_Object as a base class for creating nearly any other type of HLA
object as well. It is by no means limited to parenting spacecraft-type objects.

18

The Base Interaction Class

The design of the prototype implements HLA interactions in much the same way as HLA
objects. There is an abstract base class, sm_HLA_Interaction, from which C++ versions
of all of the interactions defined in the FOM are derived. The base class declares and
implements member functions to create, publish, subscribe to, and send interactions. The
derived C++ interactions extend the base class for their data-specific needs and inherit its
member functions. As with objects, federates publish and subscribe to interactions.
When a federate sends an interaction, the RTI delivers it to all subscribing federates
based on the interaction’s time-stamp. The sending federate creates an instance of the
desired interaction class, assigns values to its parameters, and calls a member function to
send it. The member function in turn calls the appropriate functions in the RTI
ambassador to marshal the parameters and send the interaction to the federation. Unlike
HLA objects, interactions do not persist after the RTI sends them.

The prototype design derives two subclasses from the sm_HLA_Interaction base class,
the StartTimeMsg and the SimulationEnds interactions. As the names imply, the
StartTimeMsg informs the federates of the simulation start time and the SimulationEnds
informs them of the end of the simulation. All federates subscribe to both of these
interactions. The Orbit Calculator federate reads the first data point from one of the
spacecraft positions files along with its time. It creates an instance of the StartTimeMsg
interaction, packs the time and a time increment into it and sends it out. When a federate
receives the interaction it sets its internal clock to the start time and the increment and
requests a time advance from the RTI to that point in time. From that point on, it sets its
current internal time and requests time advances from the RTI to the current time plus the
time increment. This along with the RTI’s time management keeps the federates
synchronized. Finally, when the Orbit Calculator reads the last data point from the
positions file, it creates and sends out a SimulationEnds interaction. When the federates
receive this interaction, they finish what they are doing, tidy up, and terminate.

19

•
Figure 3 The above UML class diagram shows the class relationship between the FOM
definition of the HLA_Interaction base class and the two derived interaction classes.

•
Figure 4 The above UML class diagram shows the class relationship between the C++ definition of
the HLA_Interaction base class and the two derived interaction classes. Some less important
attributes have been omitted from the diagram.

20

One could reuse the sm_HLA_Interaction as a base class for creating nearly any other
type of HLA interaction as well. As with the base object class, it is not limited to parenting
just these interactions.

The Base Federate Class

Following the object-oriented paradigm, all federates in the prototype are derived from a
base federate class, sm_HLA_Federate. As part of a federation, any HLA-compliant
federate must be able to create a federation execution, join a federation, request time
management services, synchronize with the federation, publish and subscribe to objects
and interactions, and resign from the federation. The sm_HLA_Federate abstract base
class provides functions for doing these things and it is designed to work with the object
and interaction classes described above. It uses the methods they provide for publishing
and subscribing to them and for reading and updating their attributes and parameters.
This design separates the HLA-specific functionality in a federate from its own application-
specific functionality and makes creating new federates much easier, since the HLA
interfacing is prepackaged for them and they need only implement their own specific
processing. All of the protected member functions in sm_HLA_Federate are declared
virtual so that a derived class can override them with a version of its own if necessary.
Some of the application-dependent functions are pure virtual functions, so a derived class
must implement them locally. The base class maintains, among other things, instances of
the federate ambassador and RTI ambassador, a message log, and an internal clock
within its protected data. The derived federate classes inherit these, along with the RTI
interfacing member functions. As with the object and interaction abstract base classes
described earlier, the sm_HLA_Federate class could be used in other unrelated
applications.

21

HLA Federate Base Class

• Figure 5 The diagram above depicts the dependency relationship between the federate base class
and the derived application-specific federate classes.

22

The Federate Ambassador Class

Every HLA federate must implement a federate ambassador. The federate ambassador
is a class containing a number of member functions that define the part of the HLA RTI
interface that the RTI software evokes as callbacks to send information to the federate.
An application creates the federate ambassador by deriving its own class from a base
class provided with the RTI and implementing its member functions locally.

In the prototype system, the federates all share the same local implementation of the
federate ambassador. The derived local federate ambassador class includes a private
section that contains several attributes (i.e., attributes in a C++ sense): pointers to an
event queue, a map, and a message log object. A class constructor has also been added
to assign values to these attributes. The federate creates and maintains the queue, map,
and message log objects. Pointers to these objects are passed to the federate
ambassador as arguments to its constructor. Whenever a member function is called, it
places a description of the event on the event queue and stores any associated data
(such as reflected HLA object attributes) in the event map. Since the queue and map are
pointers to objects maintained by the federate, the federate has visibility to them. As the
RTI generates events and communicates them to the federate through its federate
ambassador, the federate handles them in turn inside an event loop. This design
approach avoids the undesirable need for global data structures and maintains the object-
oriented principle of data hiding.

• Figure 6 The diagram above shows the dependency relationship between the base federate
ambassador class provided with the RTI and the local, application-specific derived class. The
member functions declared in the base class are too numerous to depict in the diagram. The
derived class diagram only shows the functions and attributes added for the local federate
ambassador.

Code Reuse

In the prototype, message logging and exceptions are provided by code reused from an
earlier GSFC project. The event queue and the event map classes used by the local
federate ambassador are instantiated from the C++ Standard Template Library (STL).

The HLA object, interaction, federate, and federate ambassador abstract base classes
and their supporting classes are compiled into a Linux shared object library. This library
should be fully reusable by future HLA-based systems.

23

Evaluation of the HLA as a Technology

What the HLA Is

The HLA is an architecture for simulations. It is a current DoD and an upcoming wider
industry standard (IEEE-1516). It consists of a set of rules and defines a standard
interface to a runtime infrastructure (RTI). The RTI facilitates communication among
individual simulator applications, provides time and data management services, and
manages the overall simulation. HLA simulations are designed to run as distributed
systems over a network.

What the HLA Is Not

The HLA is not, in itself, a simulator or a modeling tool. It is not a rapid application
development system for simulations. It provides no data display capabilities or user
interface. Although intended to make integrating disparate and remote simulators more
practical, it will not make “plug and play” a reality. Even within the context of an HLA-
compliant simulation, the persons responsible for the various simulators must still
negotiate common data types in order to make their systems compatible. If the simulators
are fully HLA-compliant, the mechanisms by which they may share data are already
established, but the individual applications must still have knowledge of those specific data
that they share. It is important to reiterate that the HLA is not a simulator. It is an
architecture around which one may design and integrate application-specific simulators.

What the HLA Is Good For

The HLA is especially well suited as basis for game-like simulations in which a little
“universe” is being simulated with multiple actors coming and going and interacting. This
is not surprising, since the HLA was originally designed for war-games. It also has
potential as a framework for integrating numerous separate simulators into a larger
distributed simulation system. The fact that HLA-based simulators are designed around
data classes from which any number of instances may be created give them great
potential for easy expandability. The HLA’s inherent distributed nature should also allow
for essentially unlimited scalability.

What the HLA Is Not Good For

The HLA is probably not a good architecture for developing simulations, which are not
game-like or are not composed of multiple separate and interacting parts. If testing and
validating a component’s external communication mechanism is part of the simulation, the
HLA is not going to help. Simulators based on a single point-to-point stimulus and
response model are also not good candidates for implementation around the HLA, since
they generally do not share persistent data and do not manage multiple instances of
simulated objects. In other words, systems that do not lend themselves to modeling as
groups of interacting objects are not good fits for the HLA. Simulators of on-board
spacecraft systems are generally required to validate the physical interfaces among their
various components. Therefore, the HLA is probably not a good architecture for such
systems either. The DMSO RTI uses CORBA internally and thus, incurs that technology’s
know performance overhead and is probably not well suited for most real-time
applications.

24

What the HLA Will Do

The RTI will handle the communications and data sharing among remote applications
provided that they all conform to the HLA paradigm and will handle the connectivity
between applications running on different platforms. It will also provide time management
and synchronization services. The RTI is a sophisticated and capable infrastructure,
which does a lot of the generalized work not specific to given applications. HLA-
compliance will definitely make it much easier and less costly to integrate disparate
simulators into larger simulations, provided that the individual simulators are all truly and
fully HLA-compliant.

What the HLA Will Not Do

The HLA will not do your simulation for you or increase the fidelity of your simulators. It
will not generate or display your data or provide you with a user interface. It is up to the
applications to provide such features. Since few COTS products are currently HLA-
compliant, the HLA will not make it easy to integrate them into other systems. However, it
should be possible to build custom interfacing software for the COTS products that would
allow them to participate in HLA-based simulations.

Observations on the RTI

The prototype uses the Linux version of the DMSO RTI ver. 1.3NG. This RTI software
does appear to implement the HLA RTI specification faithfully and completely. The only
significant deviation from the specification that we observed in the DMSO RTI is the tick()
function, which they have added to the RTI ambassador. The tick() function is not defined
in the HLA specification. The DMSO RTI requires that a federate call it frequently in order
to yield processor time to the LRC. We observed that the frequency and timing of tick()
calls is very important. Too few tick calls and the LRC fails to deliver callbacks to the
federate. Too many tick() calls in the wrong places and the federate never performs its
specific processing. Although not really a problem, some experimentation was required in
order to find the right places to call this function. Having to deal with tick() is a little
annoying and it would be nice if a future version of the RTI could dispense with it.

The DMSO RTI is very sensitive to the host system’s network configuration. Small
misconfigurations that do not affect common network applications such as telnet, ftp, or
Web browsers can affect the RTI and cause it not to work. More problematically, the RTI
generally does not give useful error messages in these situations. Again, this is not really
a problem with the RTI, but it would be nice if it gave useful enough error messages so
that a user could diagnose the problem without outside assistance.

We found that the federation execution needs to run either as a distributed system or on
higher-end hardware. The RTI software consumes a lot of system resources. In the case
of the prototype, it could only run two federates at a time on the same PC without an
unacceptable performance degradation. We solved this by using two machines. Of
course, the downside of running as a distributed system is that the load on the network
affects performance. Therefore, it is probably best to run HLA federation executions over
closed networks. The RTI will run over the Internet, but performance will vary dramatically
based on the network traffic. In order to collect meaningful performance data, we would
have needed exclusive use of a closed network and this was not available for the
prototype.

25

Overall, the Linux version of the DMSO RTI works as advertised. It is a fully usable,
“industrial strength” product and the technical support provided by SAIC, under contract to
DMSO, is quite good. Best of all, their RTI runs on numerous platforms.

Considerations

There are some facts that one should take into consideration before adopting the HLA as
the core architecture for a system. The HLA comes with a fairly steep learning curve. The
effort required for a system designer or programmer to become familiar enough with the
technology to use it effectively is tantamount to that required to learn an entirely new
programming language. At present, documentation on the HLA is sparse and good code
examples are lacking. DMSO does provide some sample programs with their RTI, but
they are not well documented.

Since most COTS products and legacy systems are not yet HLA-compliant and may
never be, one would need to develop custom interfacing applications in order to integrate
them into a simulation system. Although quite doable in most cases, the tasks would not
be trivial. The HLA facilitates the reuse of preexisting simulators, but not as “plug and
play” modules. The preexisting application’s SOM must still be reconciled with the new
simulation system’s FOM and this will nearly always require changes to one or the other.
These factors must be taken into account in any project plan so that adequate time and
resources are available to address them.

Although we could not compile quantitative performance statistics during the prototyping
effort, the current RTI does not appear to be fast enough for applications with hard, real-
time performance requirements or for high-performance computing. But since game-like
simulations run in their own simulation time, not by the wall clock, this should generally not
be a problem. Hopefully in the future, commercial vendors will provide faster RTIs with
better error messages and more documentation.

It is important to keep in mind that the HLA is still a maturing technology. As of this writing,
the IEEE-1516 specification is relatively stable, but not finalized. Currently, the DMSO RTI
is the only fully compliant and fully tested RTI available for most platforms. The Java and
CORBA IDL interfaces to the RTI are available only on Windows NT® and Solaris1. It
would be very nice if DMSO would port them to all of the platforms that they support,
especially to Linux. Unfortunately, DMSO does not currently publish the source code for
the RTI. In the absence of really good error messages and documentation, the lack of
access to the RTI source code is an impediment to the successful implementation and
testing of HLA-based systems and possibly to the HLA’s wider acceptance. Although the
on-line technical support provided by SAIC is quite good and so far free, access to the
source code would make it much easier for application developers to diagnose problems.
One huge advantage of using open-source software is that the source code is generally
available. In the case of software licensed under the GPL, it is always available.

1 Solaris® is a version of Unix and a trademark of Sun Microsystems.

26

The HLA and NASA

Although the missions of NASA and the DoD are fundamentally different, their technical
needs often overlap. There is the potential for future collaborations with the DoD and
software reuse. Budgetary realities will likely force NASA projects to rely more heavily on
simulators for mission planning, testing, and training, so there could be a role for the HLA.

Future space missions will often involve constellations or formations of spacecraft working
in unison. In order for simulators to model such missions, they will need to simulate
multiple instances of spacecraft and ground stations and possibly multiple instances of
natural objects in the space environment. They will also need to integrate different
simulators together, usually as a distributed system running on multiple platforms. In the
case of missions that rely on groups of spacecraft flying in formation, the simulators will
need to simulate interactions between multiple spacecraft and ground stations and the
natural environment. The designers of such simulations should seriously consider the
HLA as a core technology upon which their systems could be based.

Space mission simulations will usually require the services of COTS products such as
STK1 or FreeFlyer2 to provide mission and flight modeling and GOTS products such as
the SIMSS to generate telemetry. These applications are not presently HLA-compliant
and would require custom interfacing applications in order to participate in HLA-based
simulations and work with custom simulators.

The author sees two particular areas of interest to NASA where the HLA has potential,
space missions involving formations of spacecraft and the modeling of natural systems.
Of course, there may be many more.

Formation Flying

For the purpose of this discussion, formation flying is here defined as a group of two or
more spacecraft whose orbital trajectories are designed such that the relative positions of
the spacecraft form a specific geometry, at least for a moment. The spacecraft are working
together for some collaborative purpose and they communicate with each other either
directly or indirectly through an intermediate ground station.

Examples of missions using formations of spacecraft are science missions where a three-
dimensional sample of data is desired or where one needs data to be collected from
multiple vantage points at the same moment. There is also the exciting concept of a
formation of spacecraft each carrying telescopes and using interferometery to form, what
is in affect, a single, much larger instrument. There would be multiple instances of
interacting spacecraft, ground stations, natural objects, and even human controllers to
simulate. These could be modeled as objects and thus, the HLA could provide a sound
framework for large-scale simulations of such missions.

One possible design for such a simulation system would involve multiple SIMSS-based
spacecraft generating telemetry, a COTS product providing the flight dynamics
computations and graphical display, other custom simulators modeling the natural objects
under study and generating science data, and still others modeling ground stations.

1 STK® is a trademark of Analytical Graphics, Inc. (AGI).
2 FreeFlyer® is a trademark of AI Solutions, Inc.

27

Natural Systems

Scientific studies of natural systems such as those of the Earth or of other planets often
require models. Natural systems are immensely complex and involve innumerable
smaller systems. For example, an earth sciences mission might require a collection of
simulators. One simulator would model the oceans, both its physical and organic
components. Another the atmosphere. Still others would model the magnetosphere,
geological phenomena, and anthropic factors. These simulators would generate data for
the “spacecraft” to collect. Since these phenomena are interdependent, dynamic and
sometimes ephemeral, they could be modeled as collections of interacting objects. The
ability of HLA-based simulations to create any number of instances of objects and to run
as a highly modular distributed system could help make such complex simulations more
possible and scalable.

The SIMSS

The HLA prototyping effort did not involve the current SIMSS spacecraft components.
The current SIMSS simulates telemetry generated by a spacecraft and transmits that
telemetry through either IP sockets or through an application specific interface. It is
primarily a test tool and not used in mission modeling. The HLA has no application to the
SIMSS in its present role or within its present user domain. However, telemetry
generation would be a critical part of any large-scale, overall space mission simulation.
The author proposes expanding the SIMSS such that it can participate as one component
in a larger simulation and provide that crucial function.

The SIMSS is not HLA-compliant. In order for it to “play” in an HLA-based simulation, it
would have to communicate through an interfacing application. This application would
communicate with the SIMSS through IP sockets and with the rest of the simulation
through the RTI. The SIMSS and its HLA interfacing module would together make up an
HLA federate. The SIMSS would generate the necessary telemetry and send it through IP
sockets to the interfacing application. The interfacing application would receive the
telemetry stream through its IP sockets, copy it into HLA interactions, and send them to
the federation. The spacecraft objects in the mission simulation would contain many
attributes of which the telemetry stream would be one. Other simulators, including COTS
tools operating through their own interfacing applications would run as federates and
would take ownership of and update other attributes within the spacecraft objects. Given
the complexity of spacecraft, there could be a great many attributes owned and updated
by a great many different simulators.

This collaboration of many simulators, including some generating science data, could
potentially produce a very high-fidelity simulation of a space mission. A major difficulty in
developing such simulations is that the various simulators are separate applications and
run on different platforms. This difficulty does not arise in HLA-based simulations, since
the RTI handles all of the communications and inter-platform connectivity. Of course, the
task of designing SOMs for each of the simulators and integrating them together into a
single FOM remains.

28

Summary and Conclusions

The HLA is a current DoD and an upcoming IEEE standard architecture for simulations
and modeling. It is not in itself a simulator, but does provide a framework for
collaboratively integrating groups of disparate and remote simulators into larger simulation
systems. The RTI software specified by the HLA handles the generic communication,
connectivity, synchronization, and data visibility issues common to all distributed
simulators and relieves them of the burden of managing the overall system infrastructure.
The HLA is well defined, tested, and provides a welcome standard for large-scale,
distributed simulation systems. It is best suited for game-like simulations where a little
“universe” is being modeled and other types of simulations that involve multiple instances
of interacting objects.

The HLA is probably not an appropriate architecture for simulations that just generate data
for some single, external system or for simulations that cannot define their problem space
as a collection of interacting objects. For systems such as these, the HLA would just be
an unneeded extra layer and would provide little or no additional value. Simulators
required to send data through a specific type of interface, such as IP or through a
hardware bus are also not suited for the HLA, since bypassing the RTI for external
communications violates one of the primary rules of the HLA. This is not to say that
simulators such as these could not be formed into components of larger HLA-based
simulations. They certainly could be.

The HLA could find a role in NASA as a core technology in certain types of space mission
simulations, especially those involving multiple spacecraft and ground stations. It could
also serve as the basis for the scientific modeling of natural systems. The HLA is a
sophisticated and viable technology for some types of simulations, but it is important to
reiterate that the HLA is not a simulator or a rapid development tool. It is a standard
framework for integrating simulators. The HLA will not increase the fidelity of simulators,
but its modular and distributed design will make it easier to build higher-fidelity simulators.
In order to benefit from it, simulation systems must be designed from the beginning for
HLA-compliance.

The HLA-based prototype space mission simulator is far too simplistic to be of use in any
real mission, but that was not its purpose. Its purpose was to explore the HLA as a
technology and evaluate its viability for NASA simulations. It also had a secondary
purpose of demonstrating the viability of free, open-source software such as Linux. The
author’s conclusion on this is that much of the open-source software is as good or better
than many commercial products, could be and should be used in operational systems. A
side benefit resulting from the software development of the prototype is a set of reusable
software components for implementing HLA-compliance.

The HLA is a solid technology and should have a place at NASA. It is well suited for the
purpose for which it was designed. Like any technology, it is appropriate for some types of
applications, but not for others.

29

Glossary

abstract A class type provided by some object-oriented programming languages
base class (e.g., C++), which contains at least one pure virtual function. One may

only derive child classes from an abstract base class and may not create
object instances directly from it.

ANSI American National Standards Institute. An organization that defines
standards and conventions for among other things, compilers and operating
systems.

API Application Program Interface. The set of interfaces to software functions
provided by a library or other external software component.

attribute An individual data item contained within an HLA FOM object. Also, data
items contained within a C++ (or other OOP language) class.

base class A class defined in the HLA FOM or a class defined in an object-oriented
programming language (e.g., C++) from which other more specialized
classes are derived with inheritance of functions and attributes.

COTS Commercial Off-The-Shelf. This term usually refers to software or hardware
already available from a commercial vendor.

CSC Computer Sciences Corporation

CSOC Consolidated Space Operations Contract. A contract with NASA to provide
space operations support. Lockheed-Martin, Honeywell, and Computer
Sciences Corporation (CSC) are the three largest contractors involved.

DDM Data Distribution Management. The HLA-defined RTI service, which controls
the distribution and visibility of shared data within a federation.

discover Whenever a federate registers a new instance of a class with the RTI, the
RTI informs the other federates which have subscribed to the class. When
a federate receives notification of a new object instance of interest, it is said
in HLA terminology to “discover” it.

DMSO Defense Modeling and Simulation Office. An organization within the DoD
responsible for simulations and modeling.

DoD [U.S.] Department of Defense. The department of the U.S. Government
responsible for the nation’s defense and the management of its armed forces.

federate An individual simulator application making up one component of a larger and
often distributed simulation system (federation).

Federate
ambassador

A base class provided with the RTI software. Consists of a collection of
virtual member functions to be implemented by the specific federate
applications. The RTI evokes these functions as callback routines in order to
communicate with the federate application.

30

federation A collection of HLA-compliant simulator applications (federates) which are
collaboratively integrated together into a larger simulation system.

FOM Federation Object Model. The definition of the types and forms of all data
shared by federates within a federation. The definitions of all of the object
and interaction classes known to the federation makeup the FOM. The FOM
must be documented in accordance with the HLA specification.

FOM An HLA object class defined in the FOM. Note that this is not the same as
object a C++ object.

“FOM-O-Rama”
The integration meeting between the persons responsible for each
federate where they reconcile the SOMs of their respective federates
together into a federation-wide FOM. The meeting where the FOM is
agreed upon and defined.

FreeFlyer® A commercial product sold by AI Solutions, Inc., which provides space
mission modeling and flight dynamics computations.

FSF Free Software Foundation. A non-profit organization based in Boston, MA,
which develops free and open-source software. The FSF raises money for
and manages the GNU project.

GNU “GNU is Not Unix.” A recursive acronym, which refers to the free and
open-source software project managed by the non-profit Free Software
Foundation. The GNU project developed major portions of the Linux
operating system.

GOTS Government Off-The-Shelf. Software that was developed on a U.S.
Government contract, is owned by the U.S. Government, and is
available for use without cost to other Government projects.

GPL GNU General Public License. A software license defined by the FSF that
that permits the free use, copying, and redistribution of software and source
code.

GSFC Goddard Space Flight Center. A NASA facility in Greenbelt, Maryland.

HLA High Level Architecture. A standard architecture for simulations and
 modeling developed by DMSO also known as IEEE-1516.

IEEE Institute of Electrical and Electronics Engineers. A professional organization,
which defines and publishes standards in the computing and engineering
fields.

IEEE-1516 An industry standard for simulations and modeling architectures based
on the HLA.

interaction An HLA component which contains ephemeral data communicated between
two or more federates; essentially a broadcast message.

Linux™ A free and open source Unix-like operating system licensed under the GPL.

31

LRC Local RTI component. The component of the RTI which is bound to a
federate and allows the federate to communicate with the RTI ambassador.

Matlab® A commercial software product soled by The MathWorks, Inc.™ Essentially,
a fourth generation language (4GL) and programming environment
for mathematics, scientific and other technical applications, and data display.

NASA National Aeronautics and Space Administration. The Agency of the U.S.
Government primarily responsible for space exploration and space
operations.

object An HLA structure, which contains persistent data shared between two or
more federates within a federation, a FOM object. Also, a type of data
container provided by the OOP paradigm that associates data with the
functions that operate on them.

Octave A free, fourth generation language (4GL) and programming environment for
mathematics and technical applications that is mostly source compatible
with Matlab® and is licensed under the GPL.

OMT Object Model Template. A standard template for defining and documenting
FOMs and SOMs.

OOP Object-Oriented Programming. A software design paradigm that bundles
data and the functions that operate on them together into single, discreet
components from which other more specialized components may be
derived.

parameter An individual data item contained within an HLA FOM interaction.

pure virtual
function A member function that is declared in the specification of an abstract base

class but not implemented in that base class. The implementation is deferred
to the derived classes. All derived classes must implement the function.

POSIX Portable Operating System Interface. An industry standard for interfacing to
Unix and Unix-like operating systems.

publish The act of a federate informing the RTI that it intends to update the attributes
of a particular class of FOM object.

register The act of a federate creating a new instance of a FOM object class through
the RTI.

reflect The act of a federate reading data values from an FOM object instance’s
attributes after another federate has updated them.

RTI Runtime Infrastructure. The software which implements the HLA interface
and manages the simulation.

RTI
ambassador

The class contained in a library provided with the RTI software, which
contains public member functions called by the federate to
communicate with the RTI.

32

SAIC Science Applications International Corporation. SAIC is the prime contractor
to DMSO for the development and support of the DMSO RTI.

SIMSS Scalable Integrated Multi-mission Simulation Suite. A customizable and
configurable spacecraft simulation and telemetry generation system.

SOM Simulation Object Model. The definition of the types and forms of all data
shared by a given federate with the federation. The SOM must be
documented in accordance with HLA specifications.

STK® Satellite Tool Kit. A commercial product sold by Analytical Graphics, Inc.™
(AGI), which provides extensive space mission modeling and visualization
features.

subscribe The act of a federate informing the RTI that it intends to read the attributes of
a particular class of FOM object and that it wishes to be informed whenever
those attributes are updated.

TLE Two-Line Elements. A set of parameters, which describe the orbit of a
satellite, from which the position and velocity of the satellite can be computed
for any given time.

UML Unified Modeling Language. A standard notation for documenting software
and system designs, work flows, and industrial processes.

virtual A member function in a base class, which can be overridden by an
function identically declared member function in a derived class.

	Executive Summary
	Abstract
	Acknowledgements
	Contents
	Introduction
	Overview of The High Level Architecture (HLA)
	Synopsis
	Nomenclature
	The Federation Object Model (FOM)
	Services Provided by the RTI
	Federation Management
	Declaration Management
	Ownership Management
	Time Management
	Object Management
	Data Distribution Management (DDM)

	The R&D Study and Prototype
	Purpose
	Methodology
	Platforms and Software Used
	Linux™
	GSFC Flight Dynamics Programs
	Octave
	gnuplot
	DMSO Runtime Infrastructure (RTI)

	The Prototype
	The Spacecraft Controller
	The Orbit Calculator
	The Tracking Station
	The Earth Simulator

	The Data Flow

	Software Design
	The Base Object Class
	The Base Interaction Class
	The Base Federate Class
	The Federate Ambassador Class
	Code Reuse

	Evaluation of the HLA as a Technology
	What the HLA Is
	What the HLA Is Not
	What the HLA Is Good For
	What the HLA Is Not Good For
	What the HLA Will Do
	What the HLA Will Not Do
	Observations on the RTI
	Considerations

	The HLA and NASA
	Formation Flying
	Natural Systems
	The SIMSS

	Summary and Conclusions
	Glossary

